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Abstract
Projected increases in food demand driven by population growth coupled with heightened
agricultural vulnerability to climate change jointly pose severe threats to global food security in the
coming decades, especially for developing nations. By providing real-time and low-cost
observations, satellite remote sensing has been widely employed to estimate crop yield across
various scales. Most such efforts are based on statistical approaches that require large amounts of
ground measurements for model training/calibration, which may be challenging to obtain on a
large scale in developing countries that are most food-insecure and climate-vulnerable. In this
paper, we develop a generalizable framework that is mechanism-guided and practically
parsimonious for crop yield estimation. We then apply this framework to estimate crop yield for
two crops (corn and wheat) in two contrasting regions, the US Corn Belt US-CB, and India’s
Indo–Gangetic plain Wheat Belt IGP-WB, respectively. This framework is based on the mechanistic
light reactions (MLR) model utilizing remotely sensed solar-induced chlorophyll fluorescence
(SIF) as a major input. We compared the performance of MLR to two commonly used machine
learning (ML) algorithms: artificial neural network and random forest. We found that MLR-SIF
has comparable performance to ML algorithms in US-CB, where abundant and high-quality
ground measurements of crop yield are routinely available (for model calibration). In IGP-WB,
MLR-SIF significantly outperforms ML algorithms. These results demonstrate the potential
advantage of MLR-SIF for yield estimation in developing countries where ground truth data is
limited in quantity and quality. In addition, high-resolution and crop-specific satellite SIF is crucial
for accurate yield estimation. Therefore, harnessing the mechanism-guided MLR-SIF and rapidly
growing satellite SIF measurements (with high resolution and crop-specificity) hold promise to
enhance food security in developing countries towards more effective responses to food crises,
agricultural policies, and more efficient commodity pricing.
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1. Introduction

Projected increases in food demand driven by popu-
lation growth and heightened agricultural vulnerab-
ility to climate change pose severe threats to global
food security in coming decades, especially for devel-
oping nations (Godfray et al 2010, Foley et al 2011,
Lobell et al 2011). Efforts to monitor agricultural
productivity in real time are increasingly critical to
help forecast short-term disruptions to food sup-
ply and inform the development of longer-term
strategies to enhance climate resilience. Remote sens-
ing holds great promise for estimating crop yields
at large scales and low cost (Lobell et al 2015).
Significant methodological advances in this regard
have been developed in recent decades (e.g. Lobell
et al 2005, 2015, Guan et al 2016, Burke and Lobell
2017, Jin et al 2019, Peng et al 2020). Among them,
one approach employs satellite observations of solar-
induced chlorophyll fluorescence (SIF) (Guanter et al
2014, Guan et al 2016, Peng et al 2020), an optical
signal emitted by chlorophyll upon light absorption
and thus carries direct and mechanistic information
about photosynthesis (Papageorgiou and Govindjee
2004, Porcar-Castell et al 2014, 2021). This mech-
anistic advantage of SIF combined with its mul-
tiple practical benefits over conventional vegetation
indices (VIs), including lower sensitivity to thin cloud
interference (Frankenberg et al 2012),muted sensitiv-
ity to the background soil as non-fluorescing targets
(Wang et al 2019), and less susceptibility to saturation
under high leaf area index saturation, promote SIF as
a promising tool for large-scale crop yield prediction.
For example, studies have demonstrated that satel-
lite SIF is a stronger predictor of net primary produc-
tion (NPP) than VIs, e.g. enhanced vegetation index
(Guan et al 2016). However, other studies argued that
SIF, measured at the current spatial and temporal res-
olution, is not better than VIs for predicting yield
(Cai et al 2019, Peng et al 2020, Sloat et al 2021). The
possible reason for such contrasting conclusions is
that the current satellite SIF contains substantial noise
with relatively lower spatial and/or temporal resolu-
tions. Nevertheless, SIF, which contains both struc-
tural and functional information about plants, not
only correlates well with crop productivity but also
may offer an early warning for stress onset to inform
management practices (Mohammadi et al 2022, Sun
et al 2023b).

On the analytical side, ML algorithms have
become a powerful tool in agricultural monitoring
with remote sensing observations as input (Peng et al
2018, Cai et al 2019, Ghazaryan et al 2020, Sishodia
et al 2020, Gastli et al 2021, Khalil and Abdullaev
2021, Paudel et al 2022). The main advantage of
ML is identifying connections between inputs and

outputs that mechanistic formulations cannot eas-
ily and/or fully depict. However, the right set of
inputs and a well-designed calibration process are
required to utilize this tool optimally (Chlingaryan
et al 2018). ML has significant limitations concerning
scalability, extrapolation, and generalization (Morais
et al 2021), meaning that accurate yield prediction is
often restricted to certain regions, periods, crop types,
management practices, and environmental condi-
tions, although strategies start to emerge to over-
come this limitation (Lobell et al 2015, Jain et al
2017, Jin et al 2017, Yang et al 2023, Liu et al 2024).
Moreover, sufficient and high-quality ground truth
data must be available for ML model calibration,
which is not always the case, especially in develop-
ing countries and landscapes with high spatial hetero-
geneity (Lobell et al 2020). Furthermore, future cli-
matic changes could restrict the predictability of ML-
type models calibrated against historical data, as such
scenarios have not yet been present (for ML model
training).

This study pursues a scalable approach to predict
crop yields in time and space at the regional scale
utilizing high-resolution satellite SIF and a mechan-
istic light reaction (MLR) model denoted as MLR-
SIF (Han et al 2022a). MLR-SIF estimates photosyn-
thesis directly from remotely sensed SIF from the
perspective of light reactions. The rationale is that
SIF is a direct measure of the actual electron trans-
port rate (ETR) from photosystem II to I, linking
the light and carbon reactions of photosynthesis (Gu
et al 2019). If such a mechanism can be sufficiently
represented with minimal parameter calibration, it is
hopeful to have a scalable approach, i.e. generaliz-
able in space, time, cropping systems, management
practices, etc, to estimate crop photosynthesis and
yields. Such a model would have minimal depend-
ence on the quantity and quality of ground truth
data for model calibration and, therefore, transfer-
rable to regions and/or environmental regimes areas
where/when high-quality yield estimates are unavail-
able, especially in developing countries where food
insecurity and socioeconomic vulnerability are most
pressing.

Here we apply MLR-SIF to two contrasting set-
tings: corn in the US corn belt (US-CB), and wheat
in India’s wheat belt in Indo–Gangetic plain (IGP-
WB). US-CB provides an ideal testbed, as it not
only produces a significant portion of the global
supply of corn, along with other field crops, but
also has a wealth of high-quality datasets for model
evaluation and a homogeneous landscape (Lobell
et al 2015, Ortiz-Bobea et al 2018). IGP-WB is vital
because India is the second-largest global wheat pro-
ducer, supporting 70% of India’s rural households
(Erenstein and Thorpe 2011). However, IGP-WB is
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characterized by small farms and highly heterogen-
eous landscapes, making reliable yield prediction
from satellite datasets difficult. Also, the magnitude
of yields, especially in the eastern IGP-WB (i.e. Bihar
and eastern districts of Uttar Pradesh), is lower than
in the western portion, challenging a reliable and scal-
able model calibration (Jain et al 2017, McDonald
et al 2022). The contrasting crop types, landscape
characteristics,management practices, and data avail-
ability/quality in the US-CB and IGP-WB thus offer
an excellent opportunity to examine whether MLR-
SIF driven by satellite SIF can improve large-scale
yield prediction over ML models and whether the
improvement holds across diverse agricultural land-
scapes and management.

2. Data andmethods

This study compared three models for crop yield
estimation: (1) the mechanistic MLR-SIF model,
(2) artificial neural network (ANN), and (3) ran-
dom forest (RF). MLR-SIF was applied to estim-
ate photosynthesis (section 2.2), which was sub-
sequently used to calculate crop yield following Lobell
et al (2015) and Guan et al (2016). ANN and RF
(section 2.3) are currently among themost commonly
used ML models for crop-yield estimation in liter-
ature (Chlingaryan et al 2018), and therefore were
chosen here as the baseline to assess the accuracy and
scalability of MLR-SIF.

2.1. Study regions and crop yield data
The county-level crop yield in US-CB came from
the USDANational Agricultural Statistics Service.We
focused on four states in the heart of US-CB (Indiana,
Illinois, Iowa, and Nebraska, totaling 210 counties),
because they have corn-specific OCO-2 SIF available
from previous work (details below). Yield estimation
in US-CB was conducted for five years from 2015
to 2020 (when corn-specific OCO-2 SIF is available)
except 2017 (when OCO-2 had an instrument fail-
ure in August). The district-level wheat yield in IGP-
WB came from the District Level Database (DLD)
for India (http://data.icrisat.org/dld/), including 55
districts for the states of Bihar, Uttar Pradesh, and
Haryana. Yield estimation in IGP-WBwas carried out
from 2015 to 2017 (the maximum overlap between
OCO-2 SIF and yield data).

2.2. TheMLR-SIF yield estimation framework
The MLR-SIF based framework for yield estimation
consists of three steps. First, it estimates photosyn-
thesis (or gross primary production GPP) taking
observational SIF as input (Gu et al 2019, Han et al
2022a) (equations (1)–(3)). Next, NPPwas computed
from GPP (excluding autotrophic respiration) using
the NPP/GPP ratio derived from MODIS products

(data products described in section 2.4). Finally, crop
yield was estimated from NPP and harvest index
(HI) along with other crop-type specific parameters
obtained from the literature (equation (4)). The last
two steps follow Lobell et al (2002) and Guan et al
(2016), while the main novelty of this paper lies in
the first step that calculates GPP (µmolCO2m−2 s−1)
from MLR-SIF.

GPP=

{
Ci −Γ∗

4Ci + 8Γ∗ Ja, C3 ;
1− x

3
Ja, C4 (1)

where x (unitless) is the fraction of total electron
transport of mesophyll and bundle sheath allocated
to the CO2 concentrating mechanism (C4 only), Ci

(µmol mol−1) is the intercellular CO2 concentration
(C3 only), Γ∗(µmol mol−1) is the CO2 compensa-
tion point in the absence ofmitochondrial respiration
under light (C3 only), Ja (µmol m−2 s−1) is the actual
ETR calculated as:

Ja =
ΦPSIImax · (1+ kDF)

1−ΦPSIImax
· qL ·

SIF

f esc
(2)

where ΦPSIImax (unitless) is the maximum photo-
chemical quantum efficiency of PSII for dark-adapted
leaves (ΦPSIImax is assumed as constant as it is highly
conservative across plant species under non-stressed
conditions) (Gu et al 2019), kDF (unitless) is the ratio
between the rate constants of constitutive thermal dis-
sipation and fluorescence and can also be reasonably
assumed as a constant (Gu et al 2019), f esc (unitless)
is the canopy escape probability of SIF (equation (5),
section 2.4) (Badgley et al 2017, Zeng et al 2019),
and qL (unitless) is the fraction of open PSII reaction
centers estimated with a PAR-dependent exponential
function (Han et al 2022a):

qL = aqLe
−bqL·PAR (3)

where aqL and bqL (unitless) are empirical
parameters.

Yield=

∑
NPP ·MRY · (1−MC) · 0.45 gC

gCO2

HI · fAB
(4)

where MRY is mass per harvest unit (kg bushel−1),
MC is the plant’s moisture content (unitless), HI is
harvest index (unitless), i.e. the ratio of yield mass
to aboveground biomass, and fAB is the fraction of
aboveground to total biomass (unitless).

There are multiple parameters in this set of
equations (table S1); their values were all from the lit-
erature except aqL and bqL that are used to compute
qL in equation (3). This study tested two approaches
to determine aqL and bqL. First, we obtained their
values directly from leaf-level measurements (Han
et al 2022a) and term this approach as uncalibrated
MLR-SIF. The second approach calibrated aqL and bqL

3
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only, using nonlinear least-square optimization, and
we term this as calibrated MLR-SIF. To rationale for
testing these two approaches was to examine wheth-
er/by how much parameter recalibration may help
improve the performance of MLR-SIF, a test that can
help assess the scalability of MLR-SIF.

2.3. Machine learning algorithms
We utilized MATLAB to perform ANN and RF based
yield estimation. Specifically, ANN was created using
sigmoidal transfer functions; the number of neur-
ons and hidden layers was optimized by minimiz-
ing the mean squared error through the Levenberg–
Marquardt algorithm (Kira and Sun 2020). The RF
model comprised 100 trees and employed the infin-
itesimal jackknife method to estimate the model’s
uncertainty (Wen et al 2020). To achieve optimal
predictability, both ANN and RF require a sub-
stantial crop yield dataset encompassing diverse
environmental conditions and management prac-
tices, for model calibration. Due to limited yield
data (that overlaps with available OCO-2 SIF), espe-
cially in IGP-WB, we employed the leave-one-year-
out cross-validation strategy for model performance
evaluation.

2.4. Crop-type specific OCO-2 SIF and other
ancillary datasets
This study leverage advances in high-resolution satel-
lite SIF observations (Yu et al 2019) and sub-pixel
extraction algorithms (Kira and Sun 2020) to improve
crop yield prediction. As the native satellite SIF
retrievals are often offered at low spatial resolutions
(Wen et al 2020, Sun et al 2023b), high-resolution SIF
products are needed to reduce the percentage of pixel
contamination by other crop/vegetation types. Each
crop type has its unique SIF emission capacity that
changes throughout the growing season as a function
of the growth stage and environmental conditions
(Kira and Sun 2020). Including other crop/vegetation
types in the yield estimation may lead to under/over-
estimation. Therefore, this study attempted, for the
first time, to use crop-type specific SIF (at 0.05◦) for
yield prediction in US-CB. To extract corn-specific
SIF, we applied the sub-pixel endmember unmixing
framework (Kira and Sun 2020) to the spatially con-
tiguous OCO-2 daily mean SIF product at 0.05◦ and
16-day resolution (Yu et al 2019). This spatially con-
tiguous OCO-2 SIF was reconstructed from the nat-
ive OCO-2 SIF retrievals that have substantial spatial
gaps between orbits. This product has been validated
with ground and airborne measurements to ensure
its quality, and is publicly available at (https://daac.
ornl.gov/cgi-bin/dsviewer.pl?ds_id=1863). This sub-
pixel unmixing framework enables the separation of
SIF from corn and soybean in the four major corn
production states in US-CB: Indiana, Illinois, Iowa,

and Nebraska. The four states have the least contam-
ination of vegetation types other than corn and soy-
bean, and thus are chosen here to demonstrate the
importance of crop-type specific SIF for yield estim-
ation, which were all ignored in previous studies that
utilized satellite SIF for yield prediction.Nevertheless,
the sub-pixel unmixing into crop-type specific values
can be extended to other states in future studies to
enable crop-type specific yield prediction for broader
geographical regions. Note, without otherwise spe-
cified, MLR-SIF takes the crop-specific SIF (at 0.05◦)
as input for US-CB. Unfortunately, in IGP-WB, sub-
pixel extraction of wheat-specific SIF was not feas-
ible due to the lack of sufficient pure wheat SIF pixels
needed for unmixing. Therefore, SIF at 0.05◦ (with
mixed vegetation types) was employed in IGP-WB.
Note, to ensure a fair comparison, all three models
tested here, i.e. MLR, ANN, and RF, utilized identical
satellite SIF input (16 day) during the growing season,
defined as June–September in US-CB and October–
January in IGP-WB.

The at-sensor satellite SIF is only a small por-
tion of the total canopy SIF emission (that is dir-
ectly linked to Ja and thus photosynthesis) escap-
ing out of the vegetation canopy, due to leaf/canopy
reabsorption/scattering (Yang and van der Tol 2018).
Therefore, a conversion, i.e. escape probability f esc,
is necessary to compute the total canopy SIF emis-
sion from at-sensor SIF. Here we followed Zeng et al
(2019):

f esc =
NIRV

fPAR
≈ NDVI ·NIR

fPAR
(5)

where NDVI is the normalized difference vegeta-
tion index, and NIR is surface reflectance at near-
infrared. NDVI and NIR were derived from MODIS
BRDF-corrected surface reflectance (MCD43C4 V6)
at 500 m. MODIS pixels labeled with high-quality
assurance (QA = 0) for the red and the NIR bands
were used here. To ensure consistency with crop-
specific SIF in US-CB, f esc was also computed sep-
arately for corn, which is possible at 500 m resol-
ution. f PAR came from MOD15A2H V6 at 500 m,
with only good-quality pixels (MODLAND_QC= 0)
considered.

Other ancillary datasets include PAR (to estim-
ate qL, equation (3)) and the NPP/GPP ratio (to
convert SIF-based GPP to NPP). Here we used
hourly PAR from the Modern-Era Retrospective ana-
lysis for Research and Applications V2 (MERRA-
2) at 0.5◦ × 0.625◦ (Gelaro et al 2017). The
NPP/GPP ratio was derived from the MODIS
GPP and NPP products (MOD17A2H V6, 8 day,
global, 500 m). Only pixels with good quality
assurance values (MODLAND_QC = 0) were
included. All MODIS products were filtered to
include pixels with >70% coverage of the crop of
interest.
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Figure 1. Performance of (A) uncalibrated MLR-SIF, (B) calibrated MLR-SIF, (C) ANN, and (D) RF in estimating the county-
level corn yield in US-CB.

3. Results and discussions

3.1. Corn yield estimation in US-CB
MLR-SIF, if uncalibrated, captured 49% of the USDA
yield variability in US-CB, with a regression slope of
0.94 (figure 1(A)). This is encouraging, as it requires
no model calibration, while ANN and RF require
840 data samples (=210 counties by 4 yr) for model
training/calibration. Here ANN and RF (figures 1(C)
and (D)) outperformed the uncalibrated MLR-SIF
(NRMSE = 6.37%/6.44%, R2 = 0.67/0.69, respect-
ively), not surprisingly, due to heavy model calibra-
tion. However, fine-tuning parameters aqL and bqL
significantly improved MLR-SIF’s performance for
yield estimation (NRMSE = 6.31%, R2 = 0.66, and
slope = 0.99), reaching comparable performance as
ANN and RF (figure 1(B)). This calibrated MLR-
SIF was used to generate corn yield maps for US-
CB (figure 2). MLR-SIF was able to capture the spa-
tiotemporal variability in the USDA-reported yield.
Specifically, the interannual variability of reported
corn yield was well reproduced by MLR-SIF, e.g. the
highest yield in 2018 and the lowest region-wide yield

in 2015. The spatial variability of corn yield estim-
ated by MLR-SIF resembled that reported by USDA,
i.e. relatively higher yield in Illinois and Iowa than in
Indiana and Nebraska. The prediction residual was
generally minimal for most counties, and did not
exhibit systematic spatial patterns within the study
period (figure 2: A3–E3).

3.2. Wheat yield estimation in IGP-WB
The power of the MLR-SIF yield model is mani-
fested more clearly in developing countries, where
high-quality yield data is often scarce. In IGP-WB,
the uncalibrated MLR-SIF (figure 3(A)) already out-
performed (NRMSE = 15.7%, R2 = 0.51) ANN
(figure 3(C): NRMSE = 18.2%, R2 = 0.41) and RF
(figure 3(D): NRMSE = 18.8%, R2 = 0.39). The
calibrated MLR-SIF further improved the accuracy
of yield estimation but slightly (NRMSE = 15.2%,
R2 = 0.53). Similar to US-CB, the spatial mapping
of MLR-SIF captured the spatiotemporal variability
in DLD-reported wheat yield, e.g. it well captured
the highest region-wide yield in 2017 and the lowest
yield in 2015 (figure 4). In addition, the spatial yield

5



Environ. Res. Lett. 19 (2024) 044071 O Kira et al

Fi
gu
re
2.
C
or
n
yi
el
d
m
ap
s
fr
om

U
SD

A
re
po

rt
s
(A
1–
E
1)
,M

LR
-S
IF

es
ti
m
at
es
(c
al
ib
ra
te
d)

(A
2–
E
2)
,a
n
d
th
ei
r
di
ff
er
en
ce

(U
SD

A
—
M
LR

-S
IF
)
(A
3-
E
3)
,f
or

20
15
,2
01
6,
20
18
,2
01
9,
an
d
20
20

re
sp
ec
ti
ve
ly
.

6



Environ. Res. Lett. 19 (2024) 044071 O Kira et al

Figure 3. Performance of (A) uncalibrated MLR-SIF, (B) calibrated MLR-SIF, (C) ANN, and (D) RF in estimating the district-
level wheat yield in IGP-WB.

gradient from Uttar Pradesh to Bihar (high to low)
was well reproduced by MLR-SIF within the study
period. The prediction residual was overall minimal,
except for a few districts in Haryana.

MLR-SIF’s performance in IGP-WB was gener-
ally weaker than in US-CB, which is not surprising
given the following factors. First, IGP-WB has amuch
higher cloud cover than US-CB during the growth
season. While SIF is relatively insensitive to the inter-
ference of thin clouds (Frankenberg et al 2012), it
is still impacted by thick clouds. Clouds also impact
other data input derived from surface reflectance (e.g.
land cover types, f esc). Moreover, in IGP-WB, SIF
was not purely emitted from wheat, but a mixed sig-
nal from all vegetation types within a 0.05 pixel (as
explained above). Contamination from other vegeta-
tion types could degrade the performance of MLR-
SIF. Furthermore, MLR-SIF has different formula-
tions for C3 from C4 plants. For wheat (C3), Ci is
required, which was set to be 280 ppm (=0.7xCa,
assumed to be 400 ppm at present) for simplicity in
this study (a reasonable assumption at the seasonal

scale) but is actually dynamic under ambient con-
ditions. While C4 crops (like corn) are much less
impacted by the CO2 diffusion pathway, due to the
coordination of mesophyll and bundle sheath cells to
concentrate CO2 in the vicinity of Rubisco, leaving
x (in equations (1)) invariant under environmental
variations (von Caemmerer 2000).

3.3. Scalability of MLR-SIF
Unlike ML, MLR-SIF does not require large datasets
for model calibration for the same level of predic-
tion accuracy (figure 5). This has important implic-
ations for the scalability of yield prediction models
when conditions change (e.g. weather/climate, man-
agement practices, cultivar types) and data availabil-
ity, quality, and accessibility are restricted (Weitkamp
et al 2023). For example, with climate change, shifts in
irrigation regimes, and changes in germplasm, mod-
els trained on past observations will not necessarily
replicate the new prevailing conditions. Indeed, the
capability of ML for yield prediction for an ‘unob-
served’ scenario (not present in the training data) is
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Figure 4.Wheat yield maps from DLD (A1)–(C1), MLR-SIF estimates (A2)–(C2), and their differences (DLD—MLR-SIF,
(A3)–(C3)) in IGP-WB for 2015, 2016, and 2017 respectively.

Figure 5.%NRMSE as a function of the training data size,
demonstrated by US-CB.

well documented to be limited (due to the implicit
“stationarity” assumption). Under such conditions,
ML trained with additional or new ground-truth data
would be required to re-train a ML model to achieve
reasonable performance (Mola-Yudego et al 2016).
In contrast, MLR-SIF does not require large data for
model (re)-calibration, making it more promising
for a robust prediction for future changes in both
environment and/or management practices. This has
already been manifested by our results in two aspects.
First, for low-yield years, e.g. 2015 in bothUS-CB and
IGP-WB, ANN and RF considerably overestimated

the yield of corn (figures 1(C) and (D)) and wheat
(figures 3(C) and (D)), while MLR-SIF was able to
reproduce the observed magnitude and variability
(figures 1(B) and 3(B)). Second, the performance of
ANN and RF significantly dropped in IGP-WB com-
pared to US-CB, likely a consequence of a lower yield
variability range (1.2–5.2 Ton/Ha) in the training data
than that of US-CB (5.8–15.4 Ton/Ha).

The high scalability of MLR-SIF could also allevi-
ate the need for high-quality ground-truth data for
model calibration, which could be a bottleneck in
developing countries (Lobell et al 2020). For example,
wheat yield datasets from DLD may not possess
the same degree of quality as the USDA-reported
corn yields, which may have also contributed to the
degraded performance of ANN and RF in IGP-WB
relative to that in US-CB. These results highlight the
potential of MLR-SIF for yield prediction using satel-
lite SIF as input, especially when dealing with limited
data, both in quality and quantity.

3.4. Caveats of MLR-SIF for crop yield estimation
and future work
Impact of spatial resolution and crop-type specific
SIF on yield prediction: Previous work only con-
sidered the crop-type fraction within a SIF pixel that
consists of mixed crop types (and likely other non-
crop vegetation) (He et al 2020, Peng et al 2020), but
not the crop-type specific SIF values that can dif-
fer significantly due to their differences in pheno-
logy, photosynthetic capacity, C3/C4 pathways, etc.
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Figure 6. Performance of uncalibrated MLR-SIF for yield prediction in US-CB using SIF (A) from mixed pixels at 0.05◦, and (B)
at coarser resolution (0.5◦).

To quantify such impact on yield prediction, we
applied the mixed SIF pixels at 0.05◦ that are dom-
inated by corn and soybean in US-CB to MLR-
SIF (figure 6(A)) and found that prediction per-
formance dropped significantly compared to if corn-
specific SIF were used (figure 1(A)). Other studies
(e.g. Sloat et al 2021) argued that SIF did not pos-
sess a comparative advantage for yield prediction over
conventional VIs, utilizing coarse-resolution SIF, e.g.
0.5◦. By resampling SIF from 0.05◦ to 0.5◦, here
we demonstrate that coarse-resolution SIF may con-
siderably obscure the mechanistic advantage of SIF,
leading to weak yield predictability (figure 6(B)), as
they are mixed with multiple vegetation types, in
addition to a higher likelihood of sub-pixel cloud
contamination.
Potential uncertainties from parameters

required by MLR-SIF: MLR-SIF requires multiple
parameters, includingΓ*, Ci, x, ΦPSIImax, a, b, and kDF
(table S1). Although leaf-level studies show that some
of them are highly convergent across different plant
species/biomes without abiotic/biotic stress (Gu et al
2019, Han et al 2022b), e.g. x, ΦPSIImax, future work
should explore the degree to which they vary with
environmental variations/stress, especially ΦPSIImax,
kDF, aqL and bqL (Sun et al 2023a) and the propag-
ated consequences on predicted yields. Moreover,
this study utilized a parsimonious model to com-
pute qL, which is a function of PAR only and requires
two parameters only. Future studies may explore
how qL is affected by other environmental variations,
such as temperature (Han et al 2022a), and the con-
sequences on yield prediction especially under stress.
Additionally, both Ci and Γ∗ were assumed constants
in calculating GPP of wheat (equation (1)). However,
both variables are dynamic. For example, Ci changes
with stomatal conductance governed by temperature
and vapor pressure deficit (VPD). Γ∗ also depends
on temperature and the partial pressure of oxygen.

Including a dynamic representation of Ci and Γ∗ may
further improve MLR-SIF’s performance for yield
prediction. Finally, kDF is needed for Ja estimation;
however, it is yet unknown how it varies across bio-
mes (Pfündel 1998, Gu et al 2019, Liu et al 2022).
Such uncertainty is important to quantify given the
impact of kDF on yield magnitudes.
There are also potential uncertainties from

input datasets required by MLR-SIF. MLR-SIF util-
izes multiple satellite products as input; uncertainty
in each product can propagate into the final pre-
dicted yield. For example, both f esc and NPP/GPP
ratio were taken as a regional average because they
contribute substantial noise to the yield predictions if
using pixel-specific values. More importantly, future
improvements in spatial and temporal resolutions
and retrieval methods of SIF are crucial to fully
unlock the power of satellite SIF for yield estima-
tion or in-season prediction, especially for hetero-
geneous landscapes. The FLuorescence EXplorer, to
be launched in 2025, will have significantly improved
spatial resolution (300 m) (Drusch et al 2017), which
will pave the way for applications of MLR-SIF for
small-holder farms in developing countries.

4. Conclusions

This study employed a mechanistic light-reaction-
based model driven by satellite SIF, MLR-SIF, to
estimate crop yield in US-CB and IGP-WB. We
compared MLR-SIF with commonly used ML mod-
els for yield prediction (including ANN and RF),
and found that ML models lead to high accur-
acy only when high-quality ground data are avail-
able for calibration, while MLR-SIF can perform
equally well or better without substantial ground
data in both US-CB and IGP-WB. In addition, high-
resolution and crop-specific satellite SIF are crucial
for accurate yield estimation. This study, for the
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first time, demonstrates evidence of the scalability
of MLR-SIF for yield prediction in the context of
rapidly growing satellite SIF (with increasing resol-
ution and accuracy). Future research is needed to
test its global applicability for broader/diverse crop
types, agricultural landscapes, climate regimes, and
data quality/accessibility restrictions.
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